Symulacje molekularne grafenu indukowanego laserowo dla aplikacji energetycznych i sensorycznych
Identyfikator grantu: PT01193
Kierownik projektu: Krzysztof Pyrchla
Politechnika Gdańska
Wydział Elektroniki, Telekomunikacji i Informatyki
Gdańsk
Data otwarcia: 2024-10-11
Streszczenie projektu
Projekt wykorzystuje zaawansowane metody obliczeniowe do optymalizacji grafenu indukowanego laserowo (LIG) na podłożach poliimidowych, modyfikowanego diamentami i heteroatomami, dla dwóch kluczowych zastosowań: urządzeń do przechowywania energii (baterie, superkondensatory) oraz czujników chemicznych i biologicznych.
Metodologia badań obejmuje analizę strukturalną z wykorzystaniem teorii funkcjonału gęstości (DFT) oraz symulacje dynamiki molekularnej (MD) zachowania struktur pod wpływem różnych czynników. Dla zastosowań energetycznych skupiamy się na optymalizacji pojemności i przewodności elektrycznej, podczas gdy dla sensorów - na zwiększeniu selektywności i czułości detekcji.
Innowacyjność projektu polega na jednoczesnym rozwoju dwóch aplikacji dla tego samego materiału bazowego, co pozwoli na lepsze zrozumienie zależności między modyfikacjami strukturalnymi a właściwościami funkcjonalnymi LIG. Dzięki zastosowaniu zaawansowanych metod obliczeniowych możliwe będzie znaczące przyspieszenie procesu projektowania i optymalizacji rzeczywistych urządzeń.
Oczekiwane rezultaty obejmują opracowanie wytycznych do projektowania wydajnych urządzeń energetycznych i sensorycznych oraz stworzenie bazy danych właściwości strukturalnych i elektronicznych dla różnych kombinacji modyfikacji powierzchni LIG.
Metodologia badań obejmuje analizę strukturalną z wykorzystaniem teorii funkcjonału gęstości (DFT) oraz symulacje dynamiki molekularnej (MD) zachowania struktur pod wpływem różnych czynników. Dla zastosowań energetycznych skupiamy się na optymalizacji pojemności i przewodności elektrycznej, podczas gdy dla sensorów - na zwiększeniu selektywności i czułości detekcji.
Innowacyjność projektu polega na jednoczesnym rozwoju dwóch aplikacji dla tego samego materiału bazowego, co pozwoli na lepsze zrozumienie zależności między modyfikacjami strukturalnymi a właściwościami funkcjonalnymi LIG. Dzięki zastosowaniu zaawansowanych metod obliczeniowych możliwe będzie znaczące przyspieszenie procesu projektowania i optymalizacji rzeczywistych urządzeń.
Oczekiwane rezultaty obejmują opracowanie wytycznych do projektowania wydajnych urządzeń energetycznych i sensorycznych oraz stworzenie bazy danych właściwości strukturalnych i elektronicznych dla różnych kombinacji modyfikacji powierzchni LIG.