Aktywność padaczkowa w zmodyfikowanym sieciowym modelu Izhikievicha
Identyfikator grantu: PT01269
Kierownik projektu: Jan Pyrzowski
Gdański Uniwersytet Medyczny
Wydział Nauk o Zdrowiu z Instytutem Medycyny Morskiej i Tropikalnej
Gdańsk
Data otwarcia: 2025-05-13
Planowana data zakończenia grantu: 2026-05-13
Streszczenie projektu
Celem projektu jest zbadanie wpływu zmienności opóźnienia synaptycznego na dynamikę sieci neuronalnych w kontekście powstawania wyładowań fizjologicznych (np. sharp-wave ripples, SW-R) oraz patologicznych (fast fipples / high frequency oscillations, HFO) w padaczce. Na podstawie analizy retrospektywnych danych eksperymentalnych z ludzkiej tkanki padaczkowej in-vitro, modyfikujemy sieciowy model Izhikevicha, uwzględniając dendrytyczną komponentę zmiennych opóźnień synaptycznych.
Wstępne obliczenia przeprowadzonych przy użyciu lokalnych zasobów, sugerują, że rozkład opóźnienia synaptycznego ma kluczowy wpływ na pojawianie się charakterystycznych wzorców aktywności, takich jak SW-R i HFO i pozwalają odtworzyć wzorce zapisów elektrofizjologicznych obserwowane in-vitro oraz in-vivo. Badania będą koncentrować się roli pojawienia się motywów pętli sprzężenia zwrotnego (FFL) w funkcjonalnej organizacji sieci w ramach przejścia między reżimami SW-R i HFO. Z uwagi na wstępne obserwacje że przejście to ma cechy przejścia fazowego, opracowujemy równoległy model termodynamiczny którego właściwości będą badane przy użyciu metod Monte-Carlo.
Wstępne obliczenia przeprowadzonych przy użyciu lokalnych zasobów, sugerują, że rozkład opóźnienia synaptycznego ma kluczowy wpływ na pojawianie się charakterystycznych wzorców aktywności, takich jak SW-R i HFO i pozwalają odtworzyć wzorce zapisów elektrofizjologicznych obserwowane in-vitro oraz in-vivo. Badania będą koncentrować się roli pojawienia się motywów pętli sprzężenia zwrotnego (FFL) w funkcjonalnej organizacji sieci w ramach przejścia między reżimami SW-R i HFO. Z uwagi na wstępne obserwacje że przejście to ma cechy przejścia fazowego, opracowujemy równoległy model termodynamiczny którego właściwości będą badane przy użyciu metod Monte-Carlo.