Logowanie do System sprawozdań KDM

Potencjały redoks małych układów (Fe2O3)n, n=1,3. Obliczenia kwantowe.

Kierownik projektu: Maciej Bobrowski

Politechnika Gdańska

Wydział Fizyki Technicznej i Matematyki Stosowanej

Gdańsk

Streszczenie projektu

Układy termoelektryczne wykorzystujące ciecze jonowe i rozpuszczone w nich układy redoks mogą być wykorzystywane jako urządzenia Peltiera, a więc zamiast tradycyjnych półprzewodników opartych o materiały wykonane z ciała stałego. Rozwiązanie to jest możliwe w przypadku wykorzystania dodatkowo technologii opartej o zastosowanie polimerów osadzanych na cieczach w sposób ultradokładny z zachowaniem kształtu kropli, co jednocześnie umożliwia miniaturyzację poszczególnych celek galwanicznych i całego urządzenia typu konwertera Peltiera. Ciecze jonowe składają się najczęściej z kationów organicznych i anionów zawierających jony metalu. Natomiast układy redoks składają się najczęściej z niedużych jonów łatwo przyjmujących i oddających elektrony. Niedawno obliczono (wyniki niepublikowane) iż wartości standardowych potencjałów redoks jonów układów redoks podawane względem elektrody wodorowej mają wartości blisko 0 V. Jednak okazało się również, że obliczone potencjały redoks kationów cieczy jonowych są tylko nieznacznie niższe i prawdopodobne jest iż również one biorą udział w procesach wymiany elektronowej w celkach galwanicznych zawierających ciecze jonowe i jony układów redoks. Ponadto, niedawno odkryto że zawiesina nanocząstek ferromagnetycznych w rozpuszczalnikach organicznych wywołuje efekt Sorreta i generuje efekt Seebecka, przy czym współczynnik Seebecka wynosi aż około 10^{-5} V/K czyli aż o około rząd wielkości więcej niż w przypadku cieczy jonowych czy też tradycyjnych półprzewodników opartych o tellurek bizmutu. Wykorzystanie więc nanocząstek ferromagnetycznych w układach cieczy jonowych może okazać się bardzo efektywną metodą zwiększenia odzysku ciepła i zamiany go w energię eletryczną.



W zadaniach obliczeniowych należy wyliczyć standardowe potencjały redoks dla kilku małych nanocząstek (Fe2O3)n, n =1,2,3, wykorzystując schemat Borna-Habera. Obliczenia należy prowadzić metodami kwantowymi wykorzystując odpowiednie oprogramowanie typu: Gamess, Gaussian, Mopac, Molden umożliwiające badanie struktury elektronowej w procesach chemicznych.